From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy.
نویسندگان
چکیده
Gene transfer vectors based on the human adeno-associated virus serotype 2 (AAV-2) have been developed and tested in pre-clinical studies for almost 20 years, and are currently being evaluated in clinical trials. So far, all these studies have provided evidence that AAV-2 vectors possess many properties making them very attractive for therapeutic gene delivery to humans, such as a lack of pathogenicity or toxicity, and the ability to confer long-term gene expression. However, there is concern that two restrictions of AAV-2 vectors might limit their clinical use in humans. First, these vectors are rather inefficient at transducing some cells of therapeutic interest, such as liver and muscle cells. Second, gene transfer might be hampered by neutralizing anti-AAV-2 antibodies, which are highly prevalent in the human population. In efforts to overcome both limitations, an increasing number of researchers are now focusing on the seven other naturally occurring serotypes of AAV (AAV-1 and AAV-3 to -8), which are structurally and functionally different from AAV-2. To this end, several strategies have been devised to cross-package an AAV-2 vector genome into the capsids of the other AAV serotypes, resulting in a new generation of "pseudotyped" AAV vectors. In vitro and in vivo, these novel vectors were shown to have a host range different from AAV-2, and to escape the anti-AAV-2 immune response, thus underscoring the great potential of this approach. Here the biology of the eight AAV serotypes is summarized, existing technology for pseudotyped AAV vector production is described, initial results from pre-clinical evaluation of the vectors are reviewed, and finally, the prospects of these promising novel tools for human gene therapy are discussed.
منابع مشابه
P164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...
متن کاملAdeno-associated virus serotypes: vector toolkit for human gene therapy.
Recombinant adeno-associated viral (AAV) vectors have rapidly advanced to the forefront of gene therapy in the past decade. The exponential progress of AAV-based vectors has been made possible by the isolation of several naturally occurring AAV serotypes and over 100 AAV variants from different animal species. These isolates are ideally suited to development into human gene therapy vectors due ...
متن کاملHelper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6.
We present a simple and safe strategy for producing high-titer adeno-associated virus (AAV) vectors derived from six different AAV serotypes (AAV-1 to AAV-6). The method, referred to as "HOT," is helper virus free, optically controllable, and based on transfection of only two plasmids, i.e., an AAV vector construct and one of six novel AAV helper plasmids. The latter were engineered to carry AA...
متن کاملGeneration of Helper Plasmids Encoding Mutant Adeno-associated Virus Type 2 Capsid Proteins with Increased Resistance against Proteasomal Degradation
Objective(s): Adeno-associated virus type 2 (AAV2) vectors are widely used for both experimental and clinical gene therapy. A recent research has shown that the performance of these vectors can be greatly improved by substitution of specific surface-exposed tyrosine residues with phenylalanines. In this study, a fast and simple method is presented to generate AAV2 vector helper plasmids encod...
متن کاملThe role of the adeno-associated virus capsid in gene transfer.
Adeno-associated virus (AAV) is one of the most promising viral gene transfer vectors that has been shown to effect long-term gene expression and disease correction with low toxicity in animal models, and is well tolerated in human clinical trials. The surface of the AAV capsid is an essential component that is involved in cell binding, internalization, and trafficking within the targeted cell....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current gene therapy
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2003